Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laguerre Functions and Their Applications to Tempered Fractional Differential Equations on Infinite Intervals

Tempered fractional derivatives originated from the tempered fractional diffusion equations (TFDEs) modeled on the whole space R (see [?]). For numerically solving TFDEs, two kinds of generalized Laguerre functions were defined and some important properties were proposed to establish the approximate theory. The related prototype tempered fractional differential problems was proposed and solved ...

متن کامل

Spectral Methods for Tempered Fractional Differential Equations

In this paper, we first introduce fractional integral spaces, which possess some features: (i) when 0 < α < 1, functions in these spaces are not required to be zero on the boundary; (ii)the tempered fractional operators are equivalent to the Riemann-Liouville operator in the sense of the norm. Spectral Galerkin and Petrov-Galerkin methods for tempered fractional advection problems and tempered ...

متن کامل

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

Generalized Jacobi functions and their applications to fractional differential equations

In this paper, we consider spectral approximation of fractional differential equations (FDEs). A main ingredient of our approach is to define a new class of generalized Jacobi functions (GJFs), which is intrinsically related to fractional calculus and can serve as natural basis functions for properly designed spectral methods for FDEs. We establish spectral approximation results for these GJFs ...

متن کامل

Generalized Gronwall inequalities and their applications to fractional differential equations

In this paper, we provide several generalizations of the Gronwall inequality and present their applications to prove the uniqueness of solutions for fractional differential equations with various derivatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Mathematics

سال: 2016

ISSN: 0020-7160,1029-0265

DOI: 10.1080/00207160.2015.1119270